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Summary 

 This study analyzes leaf wax biochemical traits from tropical trees within a plot-based, 

multi-trait survey spanning a 200 to 3600 m.a.s.l elevation transect in the Peruvian 

tropical rainforest (TR) and tropical montane cloud forest (TMCF). We report an 

unprecedented leaf wax n-alkane dataset comprising 639 individuals, 158 species, 105 

genera and 55 families.  

 Leaf wax n-alkane molecular abundance distributions were quantified for each individual 

via gas chromatography flame ionization detection (GC-FID). Controlling factors were 

identified using statistical partitioning of variances. 

 We find taxonomic controls dominate leaf wax n-alkane chain length distributions (>50% 

of variance). Towards lower elevations and higher temperatures, mean distributions shift 

towards slightly longer carbon chain lengths and a reduced preference for the synthesis of 

odd over even chain length preference n-alkanes. n-Alkane abundance on a leaf area basis 

(KMA) shows a step shift to more waxy leaves between 1494 and 1713 m.a.s.l., a key 

division in many forest traits. 

 The pattern of waxier leaves in the Andean sites matches increases in leaf mass per area 

(LMA) and leaf lifespan (LL), suggesting a concerted trait response in foliar investment 

across the elevation gradient. We introduce a new concept of wax net primary production 

(NPP), and show that waxier leaves counteract suppressed foliar NPP in the TMCF, thus 

forest wax production increases with elevation (from 500 to 3000 g C ha
−1 

yr
−1

) in this 

Amazon-Andes transect.  

 

Introduction 

The western Amazon contains some of the highest plant species diversity in the world (Ter 

Steege, 2010). The uplift of the Andes in the Miocene (Luebert & Muller, 2015) dramatically 

altered landscape and climate, and is considered to have been an agent in Amazonian species 

diversification (Hoorn et al., 2010). Today a fully forested elevation transect across the eastern 

flank of the Andes, has been sampled by a series of forest plots that allow the study of species 

diversity (Silman, 2011), forest productivity (Girardin et al., 2014a; Huaraca Huasco et al., 2014; 

Malhi et al., 2014), and the effects of temperature, precipitation and other environmental 

variables on plant traits (Malhi et al., 2010; Asner et al., 2014a,b; Girardin et al., 2014b). 

Additional studies of these forest plots for plant ‘traits’,  i.e. leaf venation, foliar chemistry, leaf 

waxes, and soil interactions, are a major collaborative research endeavor, the results of which are 

reported in the chapters of this special issue. Some plant traits can only be measured in living 

plants or rare macrofossils (e.g. leaf anatomy, Salinas et al., pers. comm.; Aizen & Eczurra, 

2008), but some plant biochemicals (e.g., waxes, lignin) have exceptional preservation potential 

and are exported from plants into soils, rivers and ultimately may be preserved in the geological 

record (Hedges & Oades, 1997). In particular, the waxy molecules on the surface of plant leaves 

are notably resilient tracers of past plant production, surviving fluvial export in the rivers draining 

the Andes (Ponton et al., 2014). These waxes are derived from the waxy layer on the surface of 
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plant leaves and their molecular abundance distribution and isotopic composition can be 

diagnostic or informative about environmental conditions and ecological communities (Eglinton 

& Hamilton, 1967). Very little direct data on plant leaf waxes exist from the forests of western 

Amazonia and adjacent Andean regions, although these plant biomarkers have been studied in 

lakes and rivers (Polissar & Freeman, 2010; Ponton et al., 2014; Fornace et al., 2014). The 

overarching research question here is to what extent do the high biodiversity in the western 

Amazon and the strong environmental gradients across the elevation changes in the Andes, 

manifest in leaf wax traits? This is of interest as these leaf wax traits can be measured for both 

current ecosystems and in the sedimentary molecular fossil record of past ecosystems.  

Leaf waxes have been studied since the late 19
th

 Century as a component of the leaf 

cuticular anatomy (De Bary, 1871). Study of their chemistry began in the early 20
th

 Century 

(Chibnall et al., 1934) and advanced with the availability of gas chromatography (Eglinton and 

Hamilton, 1967). The epicuticular and intracuticular waxes on plant leaves serve to protect the 

plant from desiccation, from pathogen and fungal attack, as well as altering leaf wettability and 

runoff (Jenks & Ashworth, 1999; Koch et al., 2009). This protective role extends to other 

functions, including protection from UV radiation (Shepherd & Griffiths, 2006). Many of these 

functions of leaf waxes would be expected to vary across elevation gradients, including the 

temperature, precipitation, insolation and biotic stresses that vary across the 4km profile of the 

Andes; but this has, as yet, been entirely undocumented. 

Leaf waxes are comprised of mixtures of long-chain hydrocarbons, such as n-alkanes, n-

alkanols, aldehydes, fatty acids, and wax esters (Eglinton & Hamilton, 1967). Waxes are thought 

to be synthesized early in leaf ontogeny (Jetter & Schäffer, 2001) and likely not to be regenerated 

during the lifespan of the leaf (Tipple et al., 2013; Kahmen et al., 2013). However if removed 

mechanically, leaf waxes can be regenerated, and thus some wax may be abraded in the natural 

world through wind, water or insects, and then might be replaced during a leaf’s lifespan (Jetter 

& Schäffer, 2001). Leaf waxes, thus abraded, or carried on leaves into leaf litter and soils, after 

which they may be stored, or eroded and transported further to lake and ocean sediments. Some 

fraction of the leaf waxes are remineralized by microbial activity, but in general the leaf waxes 

are the more recalcitrant of plant biochemicals and thus their proportion of plant-derived organic 

matter increases as other more labile compounds such as carbohydrates and cellulose degrade 

(Hedges and Oades, 1997). Of the leaf waxes, n-alkanes are especially well preserved (Cranwell, 

1981), and this has led to their extensive use in palaeoenvironmental studies often based upon 

their carbon isotopic composition, which allows for the separation of C3 and C4 photosynthetic 

pathways (e.g., Freeman & Colarusso, 2001; Garcin et al., 2014), or based upon their hydrogen 

isotopic composition that records changes in the hydrological cycle (e.g., Feakins & Sessions, 

2010; Sachse et al., 2012; Niedermeyer et al., 2014).  

The abundance and molecular abundance distribution of n-alkanes may also be an 

important part of the plant’s physiological and biochemical response to its environment, whether 

derived earlier in plant evolution or recently materializing as a plastic response to the present 

environment. n-Alkanes in terrestrial plants are long-chain hydrocarbons (CnH2n+2) where n 

typically is 21 to 35, of which one or two are usually dominant and have a strong odd-over-even 
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preference (Eglinton & Hamilton, 1963, 1967). Some studies have suggested that the chain length 

distributions of n-alkanes vary between species and thus can discern shifts in vegetation 

communities such as forest-grassland transitions (e.g. Jansen et al., 2010; Carr et al., 2014). But 

variations in molecular abundance distributions have also been suggested to be plastic responses 

to temperature or aridity at the time of leaf production in Juniperus virginiana (Tipple & Pagani, 

2013). Studies using atmospheric dust (e.g. Kawamura et al., 2003) or sedimentary records (e.g. 

Castañeda et al., 2009) provide supporting evidence for this suggested relationship between chain 

length and temperature or aridity. However, globally, there appears to be little confidence that 

there are diagnostic chain length fingerprints with environment climatic conditions, because both 

species and environmental effects confound the search for globally consistent patterns (Bush & 

McInerney, 2013). Even if wax composition is not uniquely identifying in a way that would make 

it useful as a universal geological biomarker, there may still be plant types and regions where 

molecular abundance distributions may be diagnostic. For example, Sphagnum in peat bogs 

dominantly make C23 (Bingham et al., 2010), whereas J. virginiana dominantly makes C35 

(Tipple & Pagani, 2013). But very little work has been done to date in the tropics. The high 

biodiversity of the western Amazon and elevation gradients of the Andes provides a diverse 

context in which to analyze taxonomic patterns and environmental controls on plant wax traits in 

the tropics.  

Leaf ‘waxiness’ is not commonly reported except in a recent study of forest-grassland 

transition in Cameroon where the varying proportions of wax production in different chain 

lengths was shown to impact the overall isotopic signature (Garcin et al., 2014). However, the 

impact of foliar biomass (Maass et al., 1995; Luo et al., 2004), or leaf ‘waxiness’ (Ashton & 

Berlyn, 1992; Liu et al., 2005), on the production of leaf waxes by plant communities and varied 

community inputs into the soil is a question that has not yet been addressed. There is a lack of 

available information on leaf wax traits in the context of leaf net primary production (NPP) and 

taxonomic diversity, and this is a void that this study seeks to comprehensively address by 

nesting leaf wax trait analysis within a comprehensive study of the region’s ecology as part of the 

CHAMBASA project (CHallenging Attempt to Measure Biotic Attributes along the Slopes of the 

Andes) as well as prior studies in the region (e.g., Silman, 2011; Girardin et al., 2014b; Asner et 

al., 2014b). 

This study of plant wax traits may reveal useful insights into the taxonomy and ecology of 

wax production, and the degree of plasticity of wax trait responses across environmental 

gradients. It is well known that plants invest in foliar biomass production (Wright et al., 2004) 

and biochemistry (Asner et al., 2014b) with varying strategies depending on environmental 

constraints, the so-called leaf economics spectrum (Wright et al.,  2004). In this region, leaf mass 

per unit area (LMA; Asner et al., 2014a,b) and leaf lifespan (LL; Girardin et al., 2014a; Huaraca 

Huasco et al., 2014; Malhi et al., 2014) increase with elevation. Higher LMA leaves represent a 

costly investment for plants, especially when the montane forests are nitrogen (N) limited (Fisher 

et al., 2013). The high cost is also reflected in the longer LL, which suggests that the duration of 

complete investment return is longer than in lowland forests. We likewise predict differences in 

leaf wax investments, although waxes comprised of C and H may be comparatively  
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metabolically ‘cheap’ for the plant. Differences in the wax composition and ‘waxiness’ of leaves 

may be driven by a need to protect their investments from abiotic (e.g. UV-B radiation) and 

biotic (e.g. fungi, pathogens) stress. However, no information about the involvement of wax 

biochemistry with LMA and LL at montane cloud forests is available yet. 

  The Peruvian lowland rainforests and montane cloud forests offer a steep elevation 

transect with changes in several key (a)biotic factors, including temperature, precipitation, net 

primary production, and carbon allocation (Malhi et al., 2013; Girardin et al., 2014; Huaraca 

Huasco et al., 2014). This diverse environment allows for the exploration of correlations between 

n-alkane characteristics and potential controlling factors. Previous studies have related changes in 

chain length distributions to both environment, or climate, and the taxonomy (e.g. Brincat et al., 

2000; Schwark et al., 2002). This study aims to determine whether n-alkane chain length and 

abundance is primarily determined by a plant’s environment or its taxonomy. We collect an 

unprecedented leaf wax dataset comprising results from leaf samples from 639 individual trees of 

which 158 species from nine sites. We report leaf ‘waxiness’ or n-alkane loading, which is an 

entirely novel data contribution from anywhere in the world. We also vastly expand the catalogue 

of information on the variations in molecular abundance distribution in this unprecedented 

tropical tree leaf wax dataset. This study yields new insights into the patterns of n-alkane 

abundance and molecular composition to reveal taxonomic, environmental controls and with the 

potential of further developing leaf wax traits as tools to study contemporary and ancient 

ecosystems. 

 

Specific questions addressed by this manuscript include 

 Are there systematic changes in leaf wax n-alkane traits across the transect?  

 Does the average chain length of n-alkanes increase with temperature (decrease with 

elevation)? 

 How does leaf wax n-alkane loading, or ‘waxiness’, and composition vary across a three-

kilometer elevation transect? 

 How do variations in leaf wax composition or abundance compare to known patterns in 

LMA and LL? 

 What are the main drivers of diversity in leaf wax traits? 

 

Materials and Methods  

Study site 

This study included 9 plots (Table 1) that belong to a group of permanent 1-ha plots in the 

Kosñipata Valley in the province of Paucartambo, department of Cusco (Malhi et al., 2010) All 

plots are operated by the Andes Biodiversity Ecosystems Research Group (ABERG, 

http://www.andesconservation.org) and are part of the ForestPlots (https://www.forestplots.net/) 

and Global Ecosystems Monitoring Network (GEM; 

http://gem.tropicalforests.ox.ac.uk/projects/aberg) networks. Plots are located in areas that have 

relatively homogeneous soil substrates and stand structure, and which have minimal evidence of 
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human disturbance (Girardin et al. 2014a). Plots were established between 2003 and 2013, with 

all stems ≥10 cm diameter at breast height tagged and identified to species-level, and plots have 

been annually measured for carbon allocation and cycling following standard the GEM Network 

protocol (Marthews et al., 2012). As such, net primary productivity estimates (Girardin et al. 

2010) and comprehensive descriptions of the carbon cycle exist for many of these plots (Girardin 

et al. 2014b; Huaraca Huasco et al., 2014; Malhi et al., 2014; Malhi et al., 2015). From February 

2013 to January 2014, mean annual air temperature varied from 9°C to 24.4°C and precipitation 

ranged from 1560 mm y
-1

 to 5302 mm y
-1

 across all sites along the gradient (Table 1). 

 

Field sampling  

From April – November 2013, plant traits were measured as part of the CHAMBASA project. 

Based on the most recently available census and diameter data, a sampling protocol was adopted 

wherein species were sampled that maximally contributed to plot basal area (a proxy for plot 

biomass or crown area). The aim was to sample the minimum number of species that contributed 

to 80% of basal area, although in the diverse lowland forest plots only sampled species 

comprising 60-70% of plot basal area were sampled. Within each species, 3-5 individual trees 

were chosen for sampling (5 trees in upland sites and 3 trees in lowland sites). If 3 trees were not 

available in the chosen plot, additional individuals of the same species from an area immediately 

surrounding the plot were sampled. Using advanced tree climbing techniques, samples from one 

fully, sunlit canopy branch and, where it existed, a fully shaded branch, each at least 1 cm 

diameter, were taken from each tree. Across all plots, about 40% of trees had shade branches 

sampled in addition to sun branches. From each branch, measurements were taken of 5 leaves 

from simple-leaved species, or 5 individual leaflets from compound-leaved species (both referred 

to as ‘leaf’ below) for trait measurements. In the case of compound leaves, the entire compound 

leaf was also collected for whole-leaf area calculations. Leaves were chosen with minimal 

damage (i.e. herbivory). Leaves were placed in coolers from the field plot to the field lab for 

drying, at low temperatures (ca. 50 °C), and thereafter stored in paper envelopes prior to lipid 

analysis. 

Figure 1  Study location map. Sites Tambopata VI, Tambopata V, Pantiacolla II, Pantiacolla III, San Pedro 

II, San Pedro I, Trocha Union IV, Esparanza, and Acjanaco are numbered 1-9, respectively. 
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Table 1 Environmental and ecological characteristics of 1 hectare study plots along a 3300 m tropical montane elevation gradient (Malhi et al., in prep.) 

CHAMBASA plot code Tambopata VI Tambopata V Pantiacolla II Pantiacolla III San Pedro II San Pedro I Trocha Union IV Esperanza Acjanaco 

RAINFOR site code TAM-06 TAM-05 PAN-02 PAN-03 SPD-02 SPD-01 TRU-04 ESP-01 ACJ-01 

Latitude -12.8385 -12.8309 -12.6495 -12.6383 -13.0491 -13.0475 -13.1055 -13.1751 -13.14689 

Longitude -69.296 -69.2705 -71.2626 -71.2744 -71.5365 -71.5423 -71.5893 -71.5948 -71.6323 

Elevation* (m) 215 223 595 859 1494 1713 2719 2868 3537 

Slope* (deg) 2.2 4.5 11.5 13.7 27.1 30.5 21.2 27.3 36.3 

Aspect* (deg) 169 186 138 160.5 125 117 118 302 104 

Solar radiation (GJ m-2 yr-1) 4.8 4.8 
  

4.08 4.36 3.49 
  

Mean annual air temperature** (°C) 24.4 24.4 23.5** 21.9** 18.8 17.4 13.5 13.1 9 

Precipitation (mm yr-1) 1900 1900 2366** 2835** 5302 5302 2318 1560 3487  

Soil moisture (%)  35.5 21.8 
  

37.3 37.6 37.3 24.3 
 

Vegetation height* 28.2 27.5 24.4 18.7 22.8 14 15.7 16.9 12.5 

Soil type Alisol Cambisol Plintico  Alisol Cambisol Cambisol Umbrisol Umbrisol Cambisol 

Ptotal (mg kg-1) 528.8 256.3 
  

1630.7   746.8 980.8 
 

Soil total N (%) 0.17 0.16 
  

0.9 1.2 1.99 1.48 
 

Soil total C (%)  1.2 1.51 
  

13.6 22.7 28.33 28.59 
 

Soil C stock (Mg C ha-1 from 0-30 cm)  37.4 43.7 
  

93.5 75.6 289 133.9 
 

Soil organic layer depth (cm) 37 13     30 32 20 50   

* Derived from high-resolution airborne Light Detection and Ranging (LiDAR) data (see Asner et al. (2013) for methodology) 
   

** Derived from observations between 6 February 2013 and 7 January 2014 
       



7 
 

To biomass-weight plot-level means, diameter data from the year with the most recent census 

data was used. While this year ranges between 2009 to 2014, it is not expected that variation in 

census year introduces bias into analyses since plots have not experienced major disturbance (e.g. 

landslide, fire, deforestation) during that time. 

 

Lipid extraction 

Lipid extraction and chemical analysis was performed in Sarah Feakins’ lab. The dried leaves 

were cut using solvent-cleaned scissors and leaf waxes were subsequently extracted by washing 

the leaf three times with dichloromethane (DCM)/MeOH (9:1) using a Pasteur pipette. The use of 

cut leaves was deemed preferable over that of pulverized leaf material to minimise contamination 

with intracellular lipids, which otherwise complicates preparation and analysis (Romero & 

Feakins, 2011).  

The obtained total lipid extract was separated into two fractions using column 

chromatography (5 cm x 4 mm Pasteur pipette, 5% water-deactivated silica gel, 100-200 mesh), 

eluting first with hexane, followed by DCM, and finally MeOH. This resulted in an alkane 

fraction (hexane) and a ‘rest’ fraction (DCM and MeOH), of which only the alkane fraction was 

used for further analysis here. 

 

n-Alkane identification and quantification 

The alkane fraction was analyzed by an Agilent Technologies
®

 gas chromatograph connected to a 

mass spectrometer and flame ionization detector (GC-FID/MS) to both identify (by MS) and 

quantify (by FID) n-alkanes. Peak areas by FID were manually integrated to quantify odd and 

even chain length n-alkanes in the range of C21 to C35 carbon chain length, relative to an in-house 

mixture of n-alkanes of known abundance. Leaf wax n-alkane abundances for these individual n-

alkanes as well as summed to report n-alkanes were calculated as: 

                                                                  

                                      

The “waxiness” of the leaf (i.e. here meaning n-alkanes) can be considered relative to per unit 

dry leaf mass (Specific alKane load; SK) reported in units of g g 
−1 

or per unit leaf lamina area 

(alKane Mass per unit Area; KMA) reported in units of g cm
−2

. SK can also be converted from 

units of g g 
−1

 of leaf biomass into g g C
−1

 by normalizing for the C content of biomass (Asner 

et al., pers. comm.). Each of these ways of presenting the alkane loading are useful for various 

calculations and comparisons that we will consider here. We further calculate ratios of n-alkanes 

including the carbon preference index (CPI), i.e. the preference for the odd over even chain 

length, and the average chain length (ACL), computed as:  

    
       

        
   (  n. 1)                           

       

   
   (  n. ) 

The sample set for n-alkane quantification includes 639 individual samples with the following 

distribution across the forest plots: ntam-06 = 75, ntam-05 = 93, npan-02 = 39, npan-03 = 37, nspd-02 = 103, 



8 
 

nspd-01 = 92, ntru-04 = 81, nesp-01 = 71, nacj-01 = 48. These samples include 158 species from 105 

genera and 55 families. 

 

Statistical analysis 

The statistical analysis was performed within R v3.1.3 (R Core Team,  015), using the ‘lme4’ 

(Bates et al.,  014), ‘plyr’ (Wickham,  011), ‘Hmisc’ (Harrell et al.,  015), ‘devtools’ (Wickham 

& Chang,  015), and ‘gemtraits’ packages (Shenkin, in development). 

 Differences in the ACL and KMA were investigated by performing one-way ANOVAs 

and Tukey’s Honest Significant Difference tests for multiple comparisons. Indvidual ACL values 

were weighted by individual KMA and after calculating species averages the community-

weighted mean was calculated on the basis of tree species basal area within the forest plot, using 

the ‘plyr’ package and custom scripts. Displayed error bars were plotted using functions from the 

‘Hmisc’ package. The weighted mean and the weighted standard deviation were calculated using: 

    
   

 
      

   
 
   

                          
 

              
   

          
 
   

  
 

, where wi is the weight for the i
th

 observation, N’ is the number of non-zero weights, and     is 

the weighted mean of the observations. 

 Partitioning of variances was performed using the ‘lme4’ package to separate 

phylogenetic from environmental control factors over either ACL or KMA. A nested linear 

mixed-effects model was developed using family, genus, species, and site as random factors: 

                       

where Fi is family i, Gij is genus ij within family i, Sijk is species ijk within genus ij, Tl is the site 

effect, and Rijkl is the residual error of the measurement and non-site effects. The contribution of 

each factor to the variable of interest is reported as a percentage, assuming that the total variance 

      
  consists of the sum of the variances of the model factors: 

      
    

    
    

    
    

  

These obtained variances show whether the major impact on the variable of interest is taxonomy, 

site effects, or unknown factors (the residual). 

 

Results 

Molecular abundance distribution of n-alkanes 

We found sampled trees to have n-alkanes with carbon chain lengths in the range of C21 to C35. 

C29 and C31 were found to be the dominant homologues across all sites with abundances ranging 

from 20 to 430 µg g
-1

 (n-alkane homologue abundance per unit mass of dry leaf). C27 alkanes are 

present at low abundances at the lowland sites, but are increasingly abundant at higher elevations. 

Most other chain length n-alkane homologues are of relatively low abundance throughout < 30 

µg g
-1

. The abundance of C21-C35 n-alkane homologues was determined for each individual tree 

and the mean abundance is reported for each species, revealing considerable variability between 

species (Table S1). The mean molecular abundance distribution for each site (Fig. 2) displays 
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some tendency to shift with elevation (increasing abundance of C27 with elevation already 

mentioned):C35 is only present in detectable amounts in species present at the lowland sites.  

The varied ‘fingerprints’ of chain length distribution can be summarized by a single 

number, the average chain length (ACL; Eqn. 2). The ACL of species is highly variable ranging 

from 24.1 to 32.6 overall. Only ACJ-01 (9 °C) is statistically different from all other sites by 

Tukey’s Honest Significant Difference test (Table S3), with a shorter mean ACL of 27.9. 

However despite the individual variability, the site mean ACL tends to increase with towards 

lower elevations (likely responding to temperature). Linear regression analysis reports a 

relationship between temperature and ACL of ACL = 0.07 MAT + 28.31 with R
2
 = 0.87 for 

ACL21-35 and 0.91 for ACL27-33 (Fig. 3). 

Plants display a strong preference for synthesizing odd rather than even carbon chain 

length n-alkanes (Fig. 2). This tendency is summarized in a single number by the CPI21-35 (Eqn. 

1), which averages 11.3 ± 0.3 (1 S.E.) but ranges from 0.5 to 43.5 across the entire sample set 

(Fig. 4). To reduce errors in detection of small peaks, and thus in determination of the true carbon 

preference index (CPI) we also calculated the CPI27-33 for a restricted range of dominant 

homologues, the C27-C33 chain lengths (Fig. 4b). The differences between sites mean values are 

not significant with the exception of TRU-04 and ACJ-01 (p < 0.05), which are different from all 

other sites except each other. These high elevation sites have higher CPI than the other sites; they 

also have no species with CPI < 1. This large sample set notably indicates that some species do 

not display the expected odd over even preference (CPI < 1) for example Helicostylis tovarensis 

at SP-01 and SP-02 and Huberodendron switenioides at TAM-05.  Both CPI21-35 and CPI27-33 

Figure 2  Mean n-alkane molecular abundance distribution by site. Variability not shown, see Table S1. 
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show a positive trend of increasing CPI values with higher elevations (R
2
 = 0.78 and 0.72, 

respectively).  

 

Total n-Alkane loading or “waxiness”  

The total n-alkane load was calculated as the sum of the C21-35 n-alkanes and reported as alkane 

load per unit dry leaf mass (µg g
-1

; Fig. 5a,c), per unit mass carbon (µg g
-1

 C; not shown) and per 

unit leaf area (KMA, µg cm
-2

; Fig. 5b,d). Alkane load varies from 2.69 to 4722 µg g
-1

 or 5.26 to 

8827 µg g
-1

 C and KMA varies from 0.02 to 74.7 µg cm
-2

. Species with notably high KMA 

include Clethra cuneata and notably low KMA include Guatteria glauca. Tropical rainforest 

(TR) sites comprising TAM-05, TAM-06, PAN-02, PAN-03, and SPD-02, and tropical montane 

cloud forest (TMCF) sites comprising SPD-01, TRU-04, ESP-01, and ACJ-01 are significantly 

different by Tukey’s Honest Significant Difference test (Table 4). After community-weighting 

the KMA results from the individual species to generate site mean values, we find that KMA 

increases towards higher elevations (with a linear regression yielding R
2
 = 0.80), although a clear 

transition occurs between TR and TMCF sites between 1494 and 1713 masl. 

 

Partitioning of variances 

Nested ANOVA statistical methods were used to attribute variance in n-alkane loading and 

molecular abundance distributions. Nested ANOVAs were performed on the ACL, CPI. and n-

alkanes abundances (µg g
-1

 and µg cm
-2

; Fig. 6). Each of these analyses partitioned the observed 

variance into five different factors: family, genus, species, site, and residual. Taxonomy accounts 

Figure 3  a) Box and whisker plots showing the ACL showing median (thick line), 95% CI around the median 

(notches), interquartile range (box), range (whiskers), and outliers (open circles). b) ACL by temperature (a 

function of elevation), showing community means after weighting for species wax loading and basal areas, and 

1 S.E. (error bars). 
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for 64.4% of the total variance in ACL (Fig 6a; 20.7% family, 20.2% genus and 23.5% species), 

site for 19.1% and only 16.5% residual. For CPI (Fig. 6b), taxonomy accounts for 61% of 

variance (22.1% family, 0% genus, and 38.9% species), site accounts for 9.6% and residual for 

29.4%. 36.3% of variance in alkane loading per unit weight (SK; Fig. 6c) is accounted for by 

taxonomy (20% family, 0% genus, 16.3% species), and site accounts for 4.6%, with a large 

residual (59.1%). When normalized by leaf area (KMA; Fig. 6d) taxonomy accounts for a larger 

share, 53.2% of the total variance (40.9%, 0% genus and 12.2% species), site accounts for 4.2% 

and residual for 42.6%. Thus a greater proportion of variance is accounted for when considering 

alkane loading per unit leaf area. Overall, plant taxonomy is the dominant factor in driving 

“waxiness” of the leaf (as alkane) and chain length distribution (as ACL) of the n-alkanes. 

 

Discussion 

Molecular abundance distribution of n-alkanes  

The molecular abundance distribution analysis (Fig. 2) shows two dominant carbon chains, C29 

and C31, similar to that reported elsewhere (Eglinton & Hamilton, 1967). That these are common 

homologues in plant leaf wax n-alkane composition is not therefore new, but what is new here is 

the exceptional size of the dataset and that these are tropical tree species, previously understudied 

in the literature, thus representing an important addition to our global vision of plant leaf wax 

compositions. These are therefore cosmopolitan molecules that serve well as biomarkers for the 

majority of terrestrial tropical trees. However this survey also shows that despite the overall 

dominance of the C29 and C31 homologues, other homologues in the range C21 to C35 may be the  

Figure 4  a) Box and whisker plots showing the CPI showing median (thick line), and 95% CI around the 

median (notches), interquartile range (box), range (whiskers), outliers (open circles). b) Carbon preference 

index (CPI) by showing the community mean value for each site, after weighting for species wax loading and 

basal area, along with 1S.E. (error bars). 
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dominant n-alkane in any one species and that there are patterns in chain length distribution that 

vary with taxonomy and environment. The implications of this analysis in this large sample set, 

are that not all chain lengths can be followed across an environmental gradient; some chain 

lengths are more cosmopolitan than others; and no n-alkane is a uni ue ‘marker’ for a species 

(Table S1). Pragmatically then, C29 and C31 n-alkanes are useful as target molecules in isotopic 

analyses, whereas rarer  compounds such as C35 would have more limited sources that may be 

preferentially sampling  warmer environments or a smaller number of species, e.g. Cavendishia 

bracteata at ACJ-01. 

The carbon preference index (CPI) shows a strong odd-over-even preference (Fig. 4) as is 

expected of terrestrial plant material (Eglinton & Hamilton, 1967). The preference for plants to 

make the odd over even chain lengths is based upon the synthesis of alkanes by decarboxylation 

from the n-alkanoic acid, which are dominantly even chain lengths. Long chain fatty acids are 

synthesized with the addition of a 2 carbon acetate unit from an even chain length precursor, 

however if plants begin with an odd chain length precursor an even chain length n-alkane will 

Figure 5  Leaf n-alkane loading with box and whisker plots (a and b) showing the n-alkane loading  by a) leaf 

dry weight (SK) and b) lamina area (KMA), showing median (thick line), 95% CI around the median 

(notches), interquartile range (box), range (whiskers), and outliers (open circles). Also showing scatter plots 

with linear regression for c) SK and d) KMA, showing site community mean values weighted for species basal 

area with 1S.E. (error bars). 
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result (Zhou et al., 2010), and this can be viewed as a biochemical ‘mistake’ as it is not the 

dominant pathway. The extent to which plants make these ‘mistakes’ in biosynthesis has never 

before been so comprehensively sampled in a large dataset reporting CPI, and that this is done in 

a biodiverse tropical ecosystem provides for novel observations about the flexibility of this 

biosynthetic pathway. In order to study the propensity of plants to make biosynthetic mistakes, 

we focus on two species with low CPI:  Helicostylis tovarensis (Moraceae) and Huberodendron 

swietenioides (Malvaceae). Over 60% of individuals from these two species display CPI below 

one, which occur in the tropical rainforest (TR; H. switenioides) and at the interface of TR and 

the tropical montane cloud forest (TMCF; H. tovarensis). Low CPI values have been observed in 

gymnosperms, but are uncharacteristic for angiosperms sampled to date (Bush & McInerney, 

2013). Past studies have not found low CPI in other species of Moraceae (Sonibare et al., 2005; 

Guo et al., 2014), and  no comparison data are available for the Malvaceae.  Overall we note that 

there is a tendency to lower CPI at lower elevation (Fig. 4a,b). Although we have no mechanistic 

proof, we hypothesize that at higher temperatures that there is greater possibility for biochemical 

‘mistakes’ at faster reaction rates. Alternatively the greater biodiversity at lower elevations may 

present more variations in plant biochemistry in which such biochemical pathways, resulting in 

low CPI, can be found. This dataset provides information on individual species and patterns 

across the environmental gradient and the outliers and patterns could be used to empirically test 

the plasticity of these biosynthesis pathways further. 

The average chain length (ACL) of n-alkanes tends to increase with higher temperatures 

(Fig. 3a,b). Based on first principles we infer that this relationship may be that longer carbon 

chains offer better thermal stability. However, the 15.4 °C temperature increase across the entire 

profile results in a mere one carbon increase in site mean ACL. We emphasize that this 

correlation is not sensitive enough to warrant its use as a palaeothermometer, particularly in the 

context of the large variability between individuals (Fig. 3a). Much of the variance in ACL has 

been linked to taxonomy (Fig. 6a) suggesting that the chain length distribution of plants may in 

Figure 6 Partitioning of variance by nested ANOVA for a) ACL21-35, b) CPI21-35, c) n-alkane load by leaf dry 

weight (SK), d) n-alkane load standardized by lamina area (KMA). 
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part relate to the plants’ evolutionary past (perhaps as an adaptation to temperature). However the 

low temperature sensitivity across the profile and high interspecies variability (Fig. 3a) leads us 

to discount ACL as a proxy for temperature, at least in the TR and TMCF ecosystems studied 

here, and thus our findings are consistent with those of the prior ‘global’ survey of ACL data by 

Bush & McInerney (2015). 

 

Greater n-Alkane loading or “waxiness” in the Andes 

The quantification of n-alkane loadings show a trend of increases in wax loading with increasing 

elevations (R
2
 = 0.8, Fig. 5c,d). Observing the distributions of n-alkane loadings (Fig. 5a,b) 

allows for the identification of a step shift in ‘waxiness’ between SPD-02 and SPD-01, occurring 

at 1494 and 1713 m a.s.l. respectively. This shift shows higher wax loading on a leaf area basis 

(KMA) at the Andean forest sites. Further analysis of the step shift shows that the Andean TMCF 

sites at and above 1713 m a.s.l. are significantly different from the lower TR sites (Table S2). 

This shift corresponds to the same elevation where forest canopy height is reduced (Table 1) and 

leaf mass per area (LMA) increases substantially (Fig. 8a; Asner et al., pers. comm.). The step 

shift in KMA occurs along with strong physiological and biochemical responses across multiple 

plant traits at the same elevation. Environmentally, the step shift coincides with the cloud base 

(Halladay et al., 2012a,b), and we hypothesize that increased KMA and LMA (Fig. 7a,b) have 

shared roots in ‘economic’ investment strategies in leaf construction (Wright et al., 2004), as 

higher investments in the Andean sites being associated with longer leaf lifespan (LL; Girardin et 

al., 2014a,b; Huaraca Huasco et al., 2014; Malhi et al., 2014). Leaf wax lipids are a costly 

investment (Villar & Merino, 2001), even considering the carbon (C) and hydrogen (H) are not 

limiting nutrients here (Fisher et al., 2013). Plants in the TMCF produce more wax despite this 

Figure 7  a) Scatter plot with linear regression of leaf mass per area (LMA; Malhi et al., pers. comm.) 

across the elevation transect, showing 1 S.E. (error bars). b) Scatter plot with linear regression for KMA, 

showing site community mean values weighted for species basal area with 1 S.E. (error bars). 
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cost, diverting essential carbohydrates from 

other processes, and thus wax synthesis must 

fulfill an important function in these plants. 

This could be to protect the plant from the 

greater fungal pressure associated with the 

moist conditions within the TMCF, or even 

increases in harmful UV-B radiation 

(Steinmüller & Tevini, 1985; Kakani et al., 

2003; Liu et al., 2005) at the highest sites (e.g. 

ACJ-01) due to reductions in protective cloud 

cover (Estupiñán et al., 1996; Schafer et al., 

1996).  

The only caveat is that the leaf wax 

quantification in this study captures only the n-

alkane component of the waxes, and we do not 

have similar quantification for other ‘wax’ 

components. We note that n-alkanes are among 

the most abundant compounds found in leaf 

waxes, although their proportional abundance 

varies between different species (e.g. Bakker et 

al., 1998; Jetter & Schäffer, 2001; Conte et al., 2003) or with different leaf ages (e.g. Tulloch, 

1973; Chachalis et al., 2001). There remains more work to be done to  uantify total ‘waxiness’ 

and wax composition, including the components of wax that have greater pathogen resistance, for 

example. However, the insights from leaf wax n-alkane loading and molecular abundance 

distributions here provide a geologically useful start – as these are the components best 

represented in the molecular fossil record. 

 

Leaf wax trait diversity in the context of species diversity 

In the western Amazon and adjacent Andean forests, species diversity and wax trait diversity are 

linked: taxonomy is the dominant factor identified in nested ANOVA analyses of KMA (53.2%), 

ACL (64.4%), and CPI (61.0%; Fig. 6a,b,d). Taxonomy encompasses the categories of family, 

genus and species shown individually in Fig. 6. A large portion of taxonomic control is at the 

family level, especially for KMA, which suggests deep phylogenetic controls on the variation of 

KMA, ACL, and CPI within plants – and presumably the molecular abundance distribution 

‘fingerprints’ as well (which could not be analyzed in this way). Taxonomy is the main driver of 

variance, which resolves the origins of the considerable variability in leaf wax traits (i.e. KMA, 

ACL, and CPI) seen within the sites (Fig. 3, 4, 5; Table S1). 

The partitioning of variance finds that a relatively small proportion of the variance in leaf 

wax traits is driven by site-to-site variations (ca. 5%, 10% or 20%; Fig. 6). This is perhaps 

surprising given the topographic range (>3000 m),  temperature range (>15 °C) and precipitation 

Figure 8 The wax production, or alkane flux, of leaf 

wax n-alkanes, showing site mean leaf wax n-alkane 

production, based on species’ n-alkane loadings (this 

study), species basal area proportions (Malhi et al., 

this issue) and NPP for each site (Girardin et al., 

2014a; Huaraca Huasco et al., 2014; Malhi et al., 

2014). 
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(>3000 mm yr
-1

) across the transect, as well as other variables that shift markedly along the 

elevation profile. Given the high beta diversity, i.e. species turnover between sites, it is possible 

that the taxonomic factor encompasses current environmental factors. However, the large portion 

of variance at the family level suggests instead that long-term evolutionary responses dominate 

the shifting traits across the environmental gradient, rather than recent plastic responses to 

environment. It is likely then, that the origins of plant leaf wax traits are set much earlier in 

evolutionary history, and that these leaf wax traits are relatively insensitive to the current 

environmental changes. Ideally, additional experiments would be conducted to test whether some 

of the taxonomic effect here is environmental, e.g. through plant translocation experiments, or 

controlled greenhouse experiments. These experiments could directly test whether these leaf wax 

traits can adjust to the rapid environmental change, or if they are truly fixed by taxonomic 

controls with slower evolutionary responses. While these two options cannot be fully answered at 

this time, this study offers additional insights. Only a few species are identified at more than one 

site. For example, Clusia elliptica is found at sites SPD-01 and ESP-01, and the leaf wax KMA 

increases, ACL decreases, and CPI increases with higher elevations. These properties seem to 

suggest a plastic response of C. elliptica to changing environmental conditions, however, not all 

species respond in a similar way. Out of 23 species, 11 show decreasing ACL values and 6 show 

increases in KMA, and only 2 species (i.e. Caryocar pallidum, Clusia elliptica) show both. 

Previous research does not offer a unanimous solution to the separation of taxonomic and 

environmental signals. In a latitudinal transect along the eastern USA, Tipple & Pagani (2013) 

report correlations between temperature and ACL, as do Sachse et al. (2006) who show 

correlations between growing temperature and chain length distributions in plants. Acacia and 

Eucalyptus species in Australia have been reported to display opposite trends in ACL, while n-

alkane concentrations rose under dry conditions for both (Hoffman et al., 2013). Furthermore, 

there is weak correlation between leaf wax traits and climatic parameters in arid and semi-arid 

biomes in South Africa, likely due to inter-site differences in plant functional groups (Carr et al., 

2014). A majority of the consulted literature seems to support environmental control of leaf wax 

traits, a relationship this study cannot support, at least not for the presented elevation gradient. 

The divergence may lie in the large sample size in this study compared to the other studies that 

sampled a much smaller number of species across a larger geographic range, and point to strong 

taxonomic controls in the tropics. 

 

Ecological scaling of leaf waxes 

The leaf wax traits presented in this study (Fig. 3, 4, 5) were community-weighted based upon the 

proportions of those species sampled on within the forest plots and the wax production by those 

species. For example, the presented values of ACL take into account both the n-alkane 

abundance, or ‘waxiness’, and the species basal area. This allows for the study of chain length 

distributions without the confounding effects of plant species that are dominant in the 

environment, or have high wax production. This ecological scaling approach is unprecedented for 

leaf wax studies as far as we are aware and may represent a model for generating community 
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representative ‘calibrations’ for other leaf wax proxies including carbon (Wu et al., pers. comm.) 

and hydrogen isotopes (Feakins et al., pers. comm.). 

 

Carbon flux along the elevation gradient 

We found the waxiness of plant leaves tends to increase along the elevation gradient, and after 

generating forest plot weighted mean wax production, this can be connected with prior Net 

Primary Productivity (NPP) estimates for each forest plot where this data is available (Girardin et 

al., 2014a; Huaraca Huasco et al., 2014; Malhi et al., 2014) to generate estimates of the Net 

Primary Productivity of leaf wax n-alkanes (NPPwax) a term newly coined here. The wax 

production, or alkane flux, was calculated as follows: 

        
              

        
          

, where Calkane and Cbiomass represent the carbon fractions of n-alkanes and dry weight biomass, 

respectively, SKsite is mean n-alkane abundance per site, and NPPleaf is the leaf net primary 

production (NPPleaf). 

We found that the NPPwax increases towards higher elevations (Fig. 8). Wax production 

increases even as NPPleaf decreases at higher elevations (Girardin et al., 2014a; Huaraca Huasco 

et al., 2014; Malhi et al., 2014), likely because the increase in leaf waxiness counteracts the 

reduction in NPPleaf. This has implications for both contemporary and palaeoecological research 

involving the extraction of leaf wax biomarkers from riverine systems or marine system receiving 

input from these rivers. Higher NPPwax production in montane ecosystems would lead to over-

representation of these systems further downstream on a per area basis and thus may lead to the 

over-representation of mountain ecosystems in downstream sedimentary records if inputs are 

well-preserved. However remineralization in transit could lead to the loss of this mountain input 

even given the higher NPPwax. In terms of ecosystem productivity, the higher NPPwax and lower 

NPPleaf in the Andes implies a higher fraction of productivity is being diverted to wax production, 

and this higher proportional investment in a defense compound necessarily diverts resources from 

growth and illustrates the trait and production responses tochanging adaptive pressures across the 

elevation profile. 

 

Conclusions 

This study has presented an unprecedented dataset of plant leaf wax traits in the megadiverse 

western Amazon tropical rainforest (TR) and adjacent Andean tropical montane cloud forests 

(TMCF) within Peru. It has quantified the molecular abundance distribution and amount of leaf 

wax n-alkanes on leaves and analyzed their association with taxonomic and environmental 

controls.  

We find an expected response of increasing n-alkane chain length at lower elevations, as 

characterized by the average chain length (ACL). However, this response is very weak, with only 

an incremental increase of one carbon chain length in the community mean across the entire 

profile (Fig. 3b). Given the large range of variability associated with taxonomy (Fig. 6a), we find 

it unlikely that ACL could be used as a proxy for environmental conditions, at least within the 
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context of the TR and TMCF studied here. It remains possible that other unique environments 

may be diagnostic, such as the puna grasslands of the high Andes that are beyond the scope of 

this forest leaf wax survey.  

Furthermore, this study identified a step shift in n-alkane loading between TR and TMCF 

ecosystems. This shift shows considerable physiological and biochemical responses across 

multiple plant traits, including reduced forest canopy height (Table 1) and a substantial increase 

in leaf mass per area (LMA; Asner et al., pers. comm.). Environmentally, this shift coincides with 

the cloud base (Halladay et al., 2014), and we thus hypothesize that the increases in KMA and 

LMA are related to leaf economics (Wright et al., 2004), with higher investments occurring in the 

Andean sites along with longer leaf lifespan (LL; Girardin et al., 2014a,b; Huaraca Huasco et al., 

2014; Malhi et al., 2014). Wax synthesis is expensive (Villar & Merino, 2001) and it requires  the 

diversion of carbohydrates away from growth and organ construction. Therefore, the increase in 

wax synthesis could be related to greater fungal pressure within the TMCF, or increases in UV-B 

radiation at the highest elevations.  

We find that taxonomy is the dominant factor affecting variance in leaf wax traits, and 

that a portion of that variance has deep phylogenetic roots at a family level. This suggests that the 

observed changes in leaf wax traits across the environmental gradient are associated with long-

term evolutionary responses and high species turnover. 

This study has identified a primary taxonomic control on leaf wax traits, and finds that the 

protective wax layer on the leaf increases along with LMA in the Andes. This has provided a new 

insight into the leaf wax trait response to taxonomic change and environmental forcings, 

providing new insights into the functioning of tropical lowland and montane forest ecosystems.  
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Table S1 Results of leaf wax n-alkane analysis by species and site. 

Species Abundance of alkanes in leaf wax (µg g-1 dry weight)     C21-C35 C27-C33 

  C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 Total Cmax ACL σ CPI σ ACL σ CPI σ 

Tambopata VI 

                         
Astrocaryum gratum 2.3 2.3 2.4 2.3 2.6 2.5 3.1 2.5 2.9 3.3 3.6 2.6 2.7 1.6 2.4 39.1 31 29.2 0.3 2.8 0.6 30.0 0.1 3.6 1.0 

Brosimum alicastrum 3.6 3.6 3.7 3.7 3.8 3.8 3.9 3.9 6.1 4.4 10.1 4.8 7.1 3.7 3.7 69.9 31 30.8 0.1 4.8 0.4 31.1 0.2 5.7 0.6 

Celtis schippii 0.0 0.3 0.1 0.2 0.1 0.2 0.5 1.0 6.1 2.6 10.5 1.7 2.2 0.0 0.0 25.6 31 30.4 0.1 3.6 0.9 30.5 0.0 4.1 1.2 

Chimarrhis hookeri 3.6 3.6 3.6 3.7 3.7 3.7 5.2 4.0 37.2 6.5 100.2 8.2 41.1 3.9 4.6 232.8 31 31.0 0.0 18.6 3.3 31.0 0.0 19.7 3.5 

Clarisia racemosa 3.7 3.7 3.8 3.8 3.8 3.8 4.4 4.8 74.1 7.9 95.5 6.1 16.5 2.4 3.8 238.4 31 30.1 0.3 20.2 3.3 30.1 0.3 21.2 3.2 

Endlicheria formosa 2.3 2.3 2.3 2.4 2.5 2.4 3.7 3.2 39.8 7.1 34.0 2.5 2.4 1.0 2.3 110.1 29 29.7 0.2 10.6 2.9 29.8 0.2 11.1 2.7 

Endlicheria sp. 28842 2.3 2.3 2.3 2.2 2.5 2.7 8.5 6.9 200.2 16.1 72.4 2.5 2.4 2.2 2.3 327.7 29 29.5 na 14.2 na 29.5 na 14.6 na 

Iriartea deltoidea 2.1 2.1 2.1 2.1 2.3 2.3 2.5 2.5 3.5 2.8 4.0 2.3 2.3 2.1 2.1 37.1 31 29.4 0.2 3.3 1.1 29.9 0.1 4.2 1.7 

Lonchocarpus guillemineanus 1.8 1.9 1.9 1.8 2.0 2.0 2.2 2.1 3.0 2.3 2.8 2.0 2.2 0.0 1.9 29.8 29 29.4 na 2.6 na 29.9 na 2.9 na 

Mabea nitida 0.0 0.4 0.2 0.4 0.6 0.7 8.4 8.0 220.0 14.1 66.3 4.1 12.9 0.7 1.3 338.0 29 29.6 0.2 11.4 1.2 29.5 0.1 12.2 1.3 

Myroxylon balsamum 3.2 3.2 3.3 3.4 3.9 3.5 5.4 4.8 41.4 5.9 27.1 4.2 4.3 3.2 3.2 119.9 29 29.6 0.0 11.5 2.2 29.8 0.1 13.2 2.6 

Ocotea bofo 0.0 0.3 0.2 0.4 0.6 1.3 7.0 2.7 51.6 3.9 26.5 0.2 0.2 0.0 0.0 94.9 29 29.4 0.1 10.3 1.2 29.4 0.1 12.8 1.3 

Otoba parvifolia 5.5 5.6 5.7 5.9 6.2 7.1 8.4 9.9 23.9 8.0 18.8 5.8 6.0 2.1 5.6 124.5 29 28.9 0.4 5.5 4.3 29.3 0.2 6.7 5.3 

Pourouma cecropiifolia 3.2 3.2 3.3 3.3 3.4 3.3 3.4 3.7 4.0 4.5 4.5 3.9 3.8 2.1 3.2 53.0 31 29.6 0.2 1.2 0.1 30.3 0.1 1.2 0.1 

Pouteria torta 2.9 3.0 3.0 3.1 3.1 3.0 3.7 2.5 77.7 5.4 58.6 3.8 4.4 1.1 2.3 177.6 29 29.8 0.1 26.7 4.3 29.8 0.1 32.2 1.7 

Pterocarpus rohrii 3.3 3.4 3.4 3.4 3.6 3.5 5.5 5.4 77.0 9.6 118.7 7.9 21.6 3.6 3.4 273.3 31 30.5 0.1 13.4 3.5 30.5 0.1 14.1 3.2 

Rinorea viridifolia 0.0 1.7 0.2 1.0 0.3 0.6 1.3 1.3 25.3 3.2 123.5 9.3 103.2 3.5 8.0 282.3 31 31.4 0.2 13.1 1.4 31.4 0.2 17.3 2.0 

Scheelea cephalotes 3.4 3.4 3.5 3.4 3.6 3.5 3.7 3.6 4.4 3.5 4.3 3.5 3.6 2.0 3.5 53.0 29 29.3 0.3 4.1 1.5 29.8 0.4 6.0 2.7 

Socratea exorrhiza 2.6 4.3 4.3 4.3 4.4 4.3 4.4 4.3 4.6 3.0 4.6 3.0 3.1 0.0 4.4 55.5 31 28.6 0.5 3.8 0.9 29.8 0.4 8.0 2.1 

Swartzia arborescens 2.7 2.7 2.7 2.8 3.0 2.9 6.6 5.6 237.8 11.6 201.3 7.6 35.8 2.8 2.8 528.7 29 30.1 0.2 27.4 1.2 30.1 0.2 28.3 1.3 

Symphonia globulifera 0.0 1.2 0.1 0.7 0.1 0.4 3.3 2.3 88.5 3.8 52.2 1.0 1.4 0.1 0.2 155.4 29 29.6 0.1 17.5 3.1 29.6 0.1 20.4 3.5 

Zanthoxylum riedelianum 2.0 2.1 2.1 2.1 2.1 2.1 8.2 4.4 153.1 5.7 17.3 2.3 2.4 2.1 2.1 210.1 29 29.1 0.0 25.7 1.7 29.1 0.0 26.6 1.5 

                          
Mean 1.8 2.2 2.0 2.2 2.2 2.3 4.5 3.8 64.0 5.8 49.4 4.0 15.6 1.7 2.7 164.3 

 

29.8 

 

11.6 

 

30.0 

 

13.3 

 
σ 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 9.3 0.5 7.2 0.4 4.5 0.2 0.4 17.6 

 

0.1 

 

1.0 

 

0.1 

 

1.1 

 

                          
Tambopata V 

                         
Anthodiscus peruanus 1.4 2.5 1.5 2.7 1.7 1.6 3.6 2.1 36.0 4.8 56.8 5.6 14.7 1.7 2.4 139.0 31 30.5 0.0 13.2 0.2 30.6 0.1 16.2 1.5 

Bertholletia excelsa 1.4 2.3 2.3 2.2 2.5 2.3 3.4 2.3 21.4 5.4 44.8 6.9 16.8 1.4 1.4 116.9 31 30.6 0.1 7.6 1.2 30.8 0.1 8.4 1.4 

Bixa excelsa 0.0 0.4 0.0 0.2 0.1 0.3 0.4 1.2 20.6 4.0 50.1 4.3 24.1 0.5 3.4 109.6 31 31.1 0.2 10.0 1.8 31.0 0.2 10.8 2.0 

Brosimum lactescens 2.0 2.3 2.1 2.3 2.2 2.2 2.5 3.0 88.5 7.3 38.7 3.0 3.7 0.0 1.5 161.2 29 29.6 0.1 15.3 2.4 29.7 0.1 17.5 2.1 

Brosimum rubescens 0.0 4.9 0.0 0.0 0.0 0.0 5.1 0.0 27.2 6.1 27.3 5.3 7.7 0.0 0.0 83.6 31 30.1 na 13.5 na 30.2 na 18.0 na 

Calophyllum brasiliense 0.0 0.7 0.1 0.4 0.1 0.4 0.5 1.8 10.9 4.1 37.5 1.1 1.9 0.1 0.1 59.8 31 30.6 0.1 6.4 0.4 30.6 0.1 7.2 0.4 

Cedrelinga cateniformis 2.4 3.1 2.5 2.4 2.5 1.2 3.2 4.4 62.5 8.8 68.7 6.7 11.6 1.3 1.3 182.6 31 30.2 0.0 11.8 0.8 30.2 0.0 12.1 0.7 

Clarisia racemosa 2.4 3.5 2.5 3.6 2.5 2.5 4.8 3.9 132.5 10.1 124.0 6.0 18.8 2.6 5.4 325.0 29 29.9 0.2 17.8 3.0 30.0 0.1 22.8 1.6 

Diplotropis purpurea 2.6 2.6 2.7 2.7 3.7 3.0 13.4 7.0 74.4 16.7 335.2 29.1 148.0 3.4 2.9 647.4 31 31.1 0.1 12.0 1.2 31.1 0.1 12.4 1.2 
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Eschweilera coriacea 2.9 2.9 3.0 3.1 3.2 3.2 3.5 3.7 4.1 4.2 52.0 18.6 121.0 6.8 4.8 237.1 31 32.2 0.2 8.0 1.7 32.2 0.2 10.0 2.4 

Hebepetalum humiriifolium 5.9 5.9 6.0 6.0 6.0 3.5 6.5 8.3 183.2 24.4 216.0 16.3 39.2 6.7 7.8 541.6 31 30.4 0.0 12.7 1.5 30.3 0.0 13.1 1.6 

Huberodendron swietenioides 1.5 3.9 4.0 4.0 4.1 4.2 4.5 5.4 5.7 6.5 6.0 3.5 2.2 1.6 1.6 58.8 30 29.2 0.7 1.6 1.0 29.9 0.3 6.7 6.1 

Iriartea deltoidea 1.9 1.9 1.9 1.9 1.9 1.9 2.1 2.1 2.7 2.3 3.8 2.1 2.1 0.0 1.2 29.7 31 29.6 0.4 3.0 0.2 30.3 0.0 3.6 0.2 

Jacaranda copaia 2.3 2.3 2.3 2.4 2.7 3.0 4.9 8.6 95.8 9.1 24.4 3.0 3.7 0.6 2.4 167.4 29 29.3 0.1 7.8 0.4 29.4 0.1 8.4 0.5 

Leonia glycycarpa 0.0 0.5 0.1 0.3 0.3 0.3 1.4 1.0 46.5 5.4 86.2 5.8 14.8 0.3 0.3 163.2 31 30.6 0.1 11.2 0.8 30.6 0.1 12.0 0.9 

Licania heteromorpha 0.0 0.6 0.1 0.4 0.3 0.4 3.7 1.4 63.6 5.1 54.9 1.5 2.9 0.1 0.2 135.3 29 29.8 0.2 14.1 0.1 29.8 0.2 15.7 0.1 

Licania sp. 28729 0.0 0.4 0.1 0.3 0.1 0.2 0.9 0.7 49.7 3.7 49.0 1.3 2.2 0.0 0.0 108.8 29 30.1 0.1 15.9 1.3 30.1 0.1 17.7 0.1 

Ocotea bofo 0.0 0.3 0.1 0.3 0.4 1.0 34.1 6.5 101.1 8.2 63.9 1.2 1.4 0.0 0.0 218.6 29 29.1 0.2 11.3 1.8 29.1 0.2 12.1 1.7 

Ouratea iquitosensis 3.8 3.8 3.8 3.8 3.9 2.0 4.1 4.0 98.1 8.8 95.3 5.3 9.4 1.0 1.0 248.1 29 30.1 0.0 27.1 1.4 30.1 0.0 27.6 1.5 

Pourouma bicolor 3.4 3.5 3.5 3.6 3.7 3.7 5.0 4.7 14.1 6.1 11.2 5.1 6.2 2.4 2.5 78.6 29 29.8 0.2 2.9 1.4 30.1 0.2 3.0 1.5 

Pourouma minor 2.8 4.2 4.3 4.4 4.5 4.5 5.1 5.1 6.4 7.0 7.7 5.4 5.3 0.0 0.0 66.7 31 29.6 0.2 1.5 0.0 30.2 0.1 1.6 0.1 

Pouteria torta 3.9 4.0 4.1 4.2 7.9 5.0 75.1 11.4 258.0 14.6 188.2 7.9 32.8 4.1 5.6 626.7 29 29.9 0.7 23.4 1.6 29.9 0.7 25.2 1.9 

Pseudolmedia laevigata 1.7 2.7 1.8 2.0 1.8 2.0 3.3 3.8 69.6 7.1 36.3 3.5 7.9 1.9 2.0 147.3 29 29.9 0.2 11.4 2.0 30.0 0.2 12.3 1.9 

Pseudolmedia laevis 4.4 4.5 4.6 4.7 4.8 4.7 4.9 5.2 28.8 6.9 13.9 4.9 5.2 4.4 4.5 106.4 29 29.5 0.2 7.5 0.2 29.6 0.1 8.8 0.9 

Roucheria columbiana 2.2 3.5 2.3 2.3 2.5 2.3 6.4 3.4 165.4 13.0 88.3 5.5 9.5 2.4 2.5 311.5 29 29.7 0.1 17.4 1.7 29.7 0.0 18.7 1.6 

Tachigali chrysaloides 2.0 2.9 2.9 2.8 3.0 3.0 8.4 5.5 69.1 5.8 23.5 4.1 5.8 2.1 2.1 143.0 29 29.5 0.1 13.1 0.6 29.5 0.1 14.2 1.0 

Tachigali paniculata var. alba 2.6 3.6 2.7 3.6 2.8 2.7 3.1 3.2 29.3 3.9 26.4 4.0 11.5 2.7 2.7 104.8 29 30.3 0.3 11.2 2.5 30.4 0.3 12.9 2.8 

Ticorea tubiflora 5.0 5.0 5.0 5.0 5.1 5.0 5.8 5.2 54.9 8.1 78.2 6.7 9.4 5.0 5.1 208.3 31 30.3 na 24.0 na 30.3 na 25.2 na 

                          
Mean 1.8 2.4 2.0 2.2 2.3 2.1 7.3 3.9 63.1 7.5 65.5 5.7 18.2 1.6 2.1 187.7 

 

30.1 

 

11.2 

 

30.2 

 

12.6 

 
σ 0.2 0.2 0.2 0.2 0.2 0.2 1.8 0.3 7.6 0.6 8.2 0.7 3.9 0.2 0.3 18.7 

 

0.1 

 

0.7 

 

0.1 

 

0.7 

 

                          
Pantiacolla II 

                         
Bellucia aequioba 7.1 7.1 7.2 7.4 7.3 7.4 7.6 8.5 8.4 7.4 8.5 7.1 7.6 0.0 7.0 105.5 28 28.5 na 1.6 na 29.6 na 2.0 na 

Bellucia grossularioides 6.9 7.1 7.2 7.3 7.2 7.3 7.6 10.7 11.6 8.6 15.0 7.4 10.4 6.8 6.9 127.9 31 29.8 0.2 2.7 0.4 30.3 0.1 3.0 0.4 

Eschweilera coriacea 6.2 6.2 6.3 6.2 6.3 6.3 6.5 6.5 11.2 8.6 112.7 31.6 224.8 10.8 9.1 459.0 33 32.3 na 10.0 na 32.3 na 11.7 na 

Hevea guianensis 14.6 14.7 14.8 14.8 14.9 14.7 15.2 14.7 23.6 15.3 28.8 15.2 20.6 14.7 15.7 252.4 31 30.2 0.4 9.8 2.2 30.5 0.2 15.7 0.8 

Inga alba 4.9 4.9 4.9 4.9 5.0 4.9 5.6 5.1 11.6 5.1 5.7 4.9 4.9 0.0 5.3 77.6 29 29.1 0.1 13.4 1.3 29.1 0.0 17.0 1.1 

Jacaranda copaia 4.5 4.5 4.5 4.5 4.6 4.6 5.9 5.2 18.8 5.2 6.9 4.5 4.6 1.7 4.5 84.6 29 29.0 0.1 9.3 0.6 29.1 0.0 10.9 0.5 

Ocotea bofo 11.6 11.6 11.8 11.7 11.8 11.7 14.3 12.2 28.3 13.0 27.7 11.9 12.1 3.0 11.7 204.2 29 29.6 0.1 12.5 1.1 29.7 0.1 14.4 0.8 

Ocotea insularis 13.6 13.7 13.7 13.7 13.6 13.6 21.6 15.3 69.9 18.3 67.5 14.6 15.0 0.0 13.6 317.7 29 29.8 0.2 15.4 2.7 29.8 0.2 16.1 2.8 

Pourouma bicolor 7.1 7.1 7.1 7.2 7.3 7.4 7.7 7.9 9.0 8.6 8.6 7.7 7.6 4.8 7.1 112.2 29 29.4 0.1 1.5 0.2 29.9 0.2 1.5 0.2 

Pourouma minor 9.8 9.8 9.9 9.9 10.2 10.1 11.3 11.0 12.1 12.2 12.0 10.5 10.3 7.1 9.8 156.1 30 29.1 0.1 1.5 0.2 29.6 0.0 1.6 0.2 

Pourouma mollis 3.0 3.1 3.1 3.1 3.4 3.5 4.0 4.3 4.9 5.2 5.2 3.6 3.4 1.0 3.1 53.8 30 29.2 0.1 1.3 0.0 29.7 0.1 1.3 0.1 

Pseudolmedia laevigata 3.8 7.1 7.1 7.2 7.2 7.2 7.4 7.5 18.3 8.3 15.0 7.8 8.4 5.2 7.2 124.6 29 29.9 0.2 8.6 0.6 29.9 0.2 9.7 1.0 

Senefeldera inclinata 7.8 7.8 7.8 7.8 7.9 7.8 8.2 8.4 35.7 10.7 29.3 9.1 9.8 5.6 7.9 171.6 29 30.0 0.1 10.6 1.1 30.0 0.1 10.9 1.2 

Tapirira guianensis 6.2 6.3 6.3 6.3 6.4 6.4 11.4 9.3 151.0 15.0 142.4 15.9 42.8 6.6 6.4 438.9 29 30.2 0.3 13.2 1.2 30.3 0.3 14.0 0.9 

Vochysia majuscula 7.7 7.7 7.9 7.8 8.0 7.8 8.1 8.0 25.6 10.2 90.1 11.1 28.1 5.6 7.8 241.6 31 30.3 0.5 12.7 4.1 30.6 0.3 14.4 3.3 

                          
Mean 7.6 7.9 8.0 8.0 8.1 8.1 9.5 8.9 30.8 10.2 35.9 10.0 19.0 4.9 8.1 184.8 

 

29.7 

 

8.5 

 

29.9 

 

9.9 
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σ 0.7 0.6 0.7 0.7 0.7 0.6 0.9 0.7 8.8 0.9 9.2 1.0 6.0 0.8 0.7 24.6 

 

0.1 

 

0.9 

 

0.1 

 

1.0 

 

                          
Pantiacolla III 

                         
Caryocar amygdaliforme 5.4 5.6 6.2 5.9 7.4 6.3 10.5 10.0 174.0 13.5 97.5 12.3 23.2 6.1 6.4 390.3 29 30.0 0.3 7.9 3.6 30.3 0.2 10.1 4.0 

Faramea torquata 4.5 4.5 4.6 4.6 4.8 4.6 5.6 5.2 22.4 5.7 11.2 4.7 5.0 0.0 3.4 91.1 29 29.4 0.1 10.7 1.2 29.5 0.0 12.6 1.0 

Hevea guianensis 5.1 5.2 5.6 5.4 5.7 5.5 7.6 5.9 25.4 6.0 19.3 5.5 8.5 5.1 5.5 121.5 29 29.6 0.1 11.8 1.9 29.9 0.0 16.9 1.9 

Licaria cannella 3.2 3.3 3.4 3.4 3.4 3.3 5.9 3.7 18.3 4.6 36.7 4.5 7.8 0.0 3.3 104.7 31 30.4 na 16.0 na 30.4 na 17.8 na 

Micropholis guyanensis 3.6 3.7 3.8 3.8 3.9 3.9 5.1 5.6 53.0 7.7 28.2 4.7 5.3 3.6 3.7 139.6 29 29.6 0.1 9.4 1.1 29.7 0.1 10.3 1.2 

Ocotea oblonga 4.9 4.9 5.0 4.9 5.1 5.1 8.9 5.5 21.9 5.7 15.3 5.0 5.1 0.0 4.9 102.1 29 29.3 0.0 15.8 0.4 29.4 0.0 19.0 0.0 

Plukenetia sp. 28917 7.9 7.9 8.0 8.2 8.3 8.3 8.6 8.4 17.3 9.0 21.9 8.0 8.0 0.0 0.0 129.8 31 29.8 na 9.3 na 30.1 na 13.2 na 

Pourouma bicolor 3.1 3.2 3.3 3.4 3.5 3.5 3.7 3.9 5.1 4.5 4.4 3.5 3.4 1.9 3.1 53.4 29 28.7 0.2 1.4 0.0 29.6 0.2 1.5 0.0 

Pourouma mollis 3.5 3.6 3.7 3.6 3.8 4.1 5.4 5.3 5.0 6.4 6.5 4.9 4.1 0.0 3.4 63.2 31 29.2 na 1.1 na 29.8 na 1.2 na 

Qualea paraensis 2.5 2.5 2.6 2.5 2.8 3.2 4.7 5.3 22.9 3.5 5.1 2.5 2.5 0.8 2.0 65.5 29 28.8 0.2 5.1 0.6 28.9 0.1 6.2 0.5 

Schizocalyx obovatus 3.7 3.8 3.9 4.0 3.9 3.9 4.0 3.9 4.5 3.9 4.9 3.9 4.2 2.1 2.2 56.7 31 28.9 0.6 3.2 0.4 30.2 0.2 5.7 0.2 

Senefeldera inclinata 4.6 4.7 4.8 4.8 5.0 4.8 5.9 5.5 47.9 7.8 43.9 6.1 7.9 1.2 4.0 158.8 29 29.7 0.2 12.0 1.2 29.9 0.1 15.0 1.8 

Sloanea guianensis 4.0 2.9 4.1 4.1 4.2 4.2 4.7 4.6 37.0 5.7 16.8 4.5 7.0 2.7 4.4 110.9 29 29.7 0.2 12.3 1.9 29.8 0.1 14.6 2.1 

Sloanea meianthera 5.3 5.3 5.4 5.3 5.4 5.3 5.9 5.5 11.4 5.6 10.1 5.5 8.1 3.6 5.3 93.0 29 30.3 0.6 12.9 1.2 30.6 0.6 16.1 1.5 

Tachigali setifera 4.7 5.1 5.7 5.6 5.5 5.0 8.0 5.2 51.5 6.4 43.7 5.6 9.3 4.6 4.8 170.7 29 29.7 0.0 13.5 3.9 29.9 0.1 22.6 10.8 

Tetragastris panamensis 3.9 4.0 4.1 4.3 4.3 4.2 6.4 5.5 88.5 11.5 36.8 5.2 6.6 0.0 4.0 189.1 29 29.6 na 10.5 na 29.6 na 11.4 na 

                          
Mean 4.3 4.3 4.6 4.6 4.8 4.7 6.2 5.6 40.0 6.6 25.4 5.4 7.5 2.4 4.0 130.3 

 

29.5 

 

9.6 

 

29.9 

 

12.2 

 
σ 0.2 0.3 0.3 0.3 0.3 0.2 0.5 0.4 13.4 0.7 7.1 0.6 1.3 0.4 0.4 24.5 

 

0.1 

 

0.8 

 

0.1 

 

1.1 

 

                          
San Pedro II 

                         
Alchornea latifolia 1.5 3.0 3.9 4.1 17.1 10.9 51.9 34.8 265.4 34.3 124.0 9.8 17.2 1.2 2.1 581.1 29 29.4 0.2 12.5 3.0 29.6 0.1 13.5 3.3 

Brunellia stenoptera 3.7 3.8 4.1 4.9 10.1 6.7 36.3 6.0 14.8 4.2 6.6 1.7 4.3 1.7 3.8 112.6 29 27.4 0.2 7.4 0.1 27.9 0.2 16.0 2.7 

Caryocar pallidum 3.1 3.1 3.3 3.5 4.3 4.0 5.6 4.4 20.9 7.7 53.5 9.4 16.1 3.5 3.7 146.1 31 30.6 0.1 6.2 0.9 30.8 0.1 7.7 1.7 

Cecropia angustifolia 2.9 2.9 3.1 3.2 3.7 3.4 6.7 4.7 46.2 6.2 51.4 4.5 9.4 1.9 3.1 153.2 31 30.0 0.1 13.9 1.3 30.1 0.1 15.6 1.3 

Cinchona micrantha 2.5 2.5 2.7 3.0 10.6 3.4 3.7 3.3 12.2 3.2 9.3 2.6 2.9 0.0 2.5 64.3 29 28.5 1.2 9.3 1.8 29.6 0.2 10.2 2.9 

Coussapoa villosa 1.5 1.8 3.3 2.6 4.6 2.9 4.3 3.0 4.4 3.0 3.3 2.3 1.9 1.6 1.5 42.1 25 27.3 0.2 2.1 0.4 29.2 0.0 2.2 0.3 

Cyathea sp. 28406 6.8 6.9 7.1 7.4 8.5 8.2 12.6 7.9 9.6 7.3 7.8 5.2 4.3 6.4 6.4 112.6 27 27.5 0.2 4.3 2.6 28.6 0.2 7.2 4.5 

Endlicheria macrophylla 3.4 3.5 4.0 4.7 6.1 5.8 14.0 5.2 7.7 3.9 3.9 1.7 1.7 1.7 2.5 69.7 27 27.2 0.3 4.7 2.2 27.9 0.1 8.2 3.0 

Ficus tonduzii 2.5 2.5 3.0 3.2 4.4 4.9 7.3 9.1 14.5 16.6 24.0 8.5 6.7 2.5 2.5 112.1 31 29.7 na 1.5 na 30.1 na 1.6 na 

Guarea kunthiana 3.9 3.9 4.0 4.1 4.3 4.2 4.7 4.2 8.8 4.4 12.6 4.3 4.5 0.0 4.0 71.8 31 29.4 0.7 8.1 2.6 29.9 0.3 11.0 1.7 

Guatteria glauca 4.2 4.2 4.5 4.5 4.8 4.4 4.8 4.4 5.0 4.3 4.5 0.0 2.9 0.0 4.3 56.9 29 27.2 0.3 3.4 0.3 28.8 0.2 7.2 0.7 

Helicostylis tovarensis 0.0 0.5 0.3 0.7 0.9 2.0 4.3 10.7 18.7 16.8 13.4 3.6 2.0 0.1 0.1 74.1 29 29.5 0.1 2.5 1.6 29.7 0.0 2.7 1.7 

Heliocarpus americanus 4.8 4.9 5.1 5.1 5.5 5.3 6.7 5.8 14.4 5.1 6.4 5.1 4.9 5.6 4.9 89.6 29 28.7 0.1 4.6 0.6 29.0 0.0 8.8 0.9 

Hieronyma macrocarpa 0.0 0.2 0.1 0.2 0.7 0.6 1.9 3.6 39.0 5.1 13.9 1.0 0.9 0.3 0.3 67.8 29 29.5 0.1 4.7 0.8 29.6 0.1 5.2 0.8 

Mollinedia lanceolata 0.0 2.1 1.5 2.9 3.0 3.4 12.3 6.6 96.5 4.7 14.4 0.3 0.4 0.0 0.0 148.0 29 28.8 0.1 6.5 1.0 29.1 0.0 10.2 0.5 

Nectandra reticulata 1.4 1.4 2.1 2.9 6.5 4.4 37.5 3.6 16.5 2.3 4.5 1.4 1.4 1.4 1.4 88.7 27 27.3 0.2 6.1 2.4 27.9 0.1 13.4 4.4 

Perrottetia sessiliflora 7.0 7.1 7.2 7.3 7.4 7.3 8.6 8.1 43.6 8.4 11.1 7.2 7.2 0.0 7.1 144.5 29 29.0 0.0 13.3 2.7 29.2 0.0 16.1 3.6 
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Pourouma bicolor 2.5 2.7 3.4 4.5 6.0 6.0 6.6 5.4 5.6 4.5 5.2 2.8 2.7 1.2 2.6 61.6 27 27.6 0.4 1.4 0.3 28.9 0.1 1.9 0.2 

Rauvolfia leptophylla 5.9 6.1 7.9 8.3 13.6 11.3 25.2 11.4 71.9 13.0 189.2 12.1 52.5 6.1 6.6 441.0 31 30.4 0.1 12.7 1.4 30.7 0.1 17.8 2.0 

Sapium laurifolium 2.5 2.5 2.7 2.8 3.2 2.9 4.8 3.5 35.2 4.2 13.5 2.8 3.1 2.6 2.6 88.9 29 29.1 0.2 10.4 3.9 29.3 0.2 13.0 3.6 

Tachigali setifera 0.8 1.3 3.5 1.5 2.7 1.5 6.0 4.1 53.3 4.6 17.6 2.0 2.6 0.9 0.9 103.4 29 29.1 0.1 7.8 1.0 29.5 0.1 9.9 1.5 

Tapirira guianensis 2.2 2.2 2.4 2.4 2.8 2.5 3.7 2.9 14.9 3.2 28.2 3.8 12.2 2.2 2.3 88.1 31 30.3 0.5 11.8 1.4 30.6 0.3 15.1 0.6 

Tapirira obtusa 1.0 1.1 1.3 1.4 1.8 1.7 4.6 4.0 112.0 8.6 117.4 6.6 23.6 0.7 1.1 287.0 31 29.8 0.2 12.0 1.6 30.0 0.1 13.8 1.3 

Turpinia occidentalis 2.3 5.9 6.5 7.2 9.9 9.3 17.1 8.7 17.5 7.5 14.4 6.2 6.3 3.7 6.3 128.7 29 28.2 0.4 6.6 3.6 28.9 0.2 8.1 3.6 

Virola sebifera 2.0 2.0 2.1 2.3 2.7 2.7 3.9 2.8 8.6 2.6 6.0 2.1 2.1 0.0 2.0 44.0 29 28.8 0.1 4.7 0.9 29.4 0.1 7.4 1.6 

Vismia glaziovii 0.0 1.0 1.0 1.9 3.3 3.0 19.7 11.4 292.2 8.4 36.1 0.3 0.4 0.0 0.0 378.7 29 29.0 0.1 12.1 3.8 29.2 0.1 13.8 3.5 

                          
Mean 2.3 2.8 3.2 3.4 5.7 4.6 13.0 8.2 68.6 8.8 39.0 4.2 8.2 1.6 2.5 176.0 

 

28.9 

 

7.8 

 

29.4 

 

10.2 

 
σ 0.2 0.2 0.3 0.3 0.7 0.6 2.1 1.6 13.6 1.5 6.9 0.5 1.4 0.2 0.3 23.4 

 

0.1 

 

0.6 

 

0.1 

 

0.6 

 

                          
San Pedro I 

                         
Alchornea latifolia 4.5 4.7 5.0 5.0 5.9 5.0 13.6 7.8 128.6 10.3 43.7 5.8 8.5 2.1 5.0 255.7 29 28.2 0.7 6.8 5.0 29.5 0.0 7.9 4.9 

Alzatea verticillata 4.8 4.9 5.9 5.7 10.1 7.1 63.8 20.2 121.1 10.4 25.9 4.0 5.6 3.4 4.8 297.8 29 28.5 0.1 9.9 1.8 28.6 0.1 11.4 2.3 

Caryocar pallidum 3.3 4.0 5.0 6.7 6.9 5.7 15.3 9.2 140.8 23.3 330.5 26.2 72.7 4.3 5.7 659.6 31 30.6 0.2 9.0 1.0 30.7 0.2 10.4 1.2 

Cecropia angustifolia 2.8 3.1 3.6 4.2 4.4 3.9 8.0 6.1 108.3 9.8 135.5 6.4 18.0 1.4 2.9 318.4 31 30.1 0.1 14.5 2.7 30.2 0.0 17.1 2.8 

Chrysophyllum sp. 9745 0.0 0.8 3.5 1.6 11.4 9.3 71.9 19.0 118.8 4.6 52.5 1.3 2.5 0.1 0.1 297.3 29 28.7 0.2 8.8 2.1 28.9 0.1 11.4 2.3 

Clusia elliptica 0.0 0.5 4.3 2.2 11.5 4.6 31.7 20.3 338.5 20.3 299.7 7.6 27.0 0.4 0.7 769.3 29 29.9 0.2 13.5 2.4 30.0 0.1 14.8 2.6 

Clusia thurifera 2.5 3.3 6.5 5.4 7.8 4.9 14.5 10.0 178.4 10.7 195.0 5.4 20.2 2.2 2.6 469.1 31 29.7 0.2 19.2 7.6 30.0 0.2 30.9 13.1 

Cyathea sp. 28406 5.4 5.5 5.7 6.0 6.1 5.9 6.0 5.6 6.6 5.5 6.1 3.9 5.7 0.0 5.5 79.3 29 27.8 0.6 3.0 0.9 29.6 0.3 6.8 1.7 

Dendropanax tessmannii 0.0 0.6 0.4 0.8 1.0 2.7 8.2 12.4 277.5 22.6 474.1 11.2 43.3 0.3 0.4 855.5 31 30.3 0.1 16.0 2.0 30.3 0.1 17.2 2.0 

Elaeagia mariae 0.0 0.8 0.8 0.9 1.8 1.9 19.8 6.8 26.8 2.2 11.6 0.7 1.5 0.0 0.7 76.4 29 28.8 0.2 8.0 0.6 28.9 0.1 9.4 0.8 

Ficus americana 3.6 3.9 4.5 5.1 9.6 11.7 34.6 38.7 206.3 24.4 94.0 8.4 12.5 3.4 3.5 464.2 29 29.3 0.1 4.9 0.4 29.5 0.2 5.5 0.3 

Guatteria glauca 0.0 0.5 0.6 0.7 0.9 1.2 2.0 1.6 5.5 1.1 2.5 0.1 0.2 0.0 0.0 16.8 29 28.5 0.3 2.5 0.2 29.2 0.1 3.7 0.3 

Hedyosmum cuatrecazanum 8.7 8.7 8.9 9.0 9.1 9.3 9.6 8.8 9.3 8.7 9.0 8.8 5.6 0.0 8.9 122.2 27 27.2 0.8 2.0 0.3 28.6 0.4 3.5 0.2 

Helicostylis tovarensis 11.1 11.3 11.8 12.2 12.3 11.9 12.1 13.4 13.9 14.5 13.5 11.8 11.5 0.0 11.5 172.7 30 28.4 0.4 1.1 0.1 29.6 0.0 1.1 0.1 

Ilex gabrielleana 4.4 4.6 4.9 5.2 7.8 5.5 30.8 9.1 222.6 10.1 121.3 5.5 8.7 4.3 4.7 449.6 29 29.5 0.1 25.7 5.5 29.5 0.1 31.0 5.7 

Inga feuillei 4.3 4.3 4.5 4.4 4.7 4.4 5.2 5.7 51.4 5.5 5.6 4.3 4.4 0.0 4.4 113.1 29 28.9 na 16.1 na 29.0 na 17.9 na 

Inga killipiana 2.9 3.0 3.2 3.3 3.6 3.4 4.5 4.2 22.0 5.5 17.5 3.7 3.8 2.9 3.0 86.6 29 29.3 0.6 6.6 0.5 29.6 0.4 9.1 2.2 

Lissocarpa sp. 5077 8.2 8.3 8.5 8.6 8.8 8.9 10.3 9.8 16.9 13.2 45.0 24.7 66.2 13.8 12.6 263.9 31 31.9 0.3 3.7 0.3 31.8 0.3 4.9 1.0 

Lissocarpa sp. 9727 5.7 5.9 6.1 6.3 6.5 6.4 7.5 6.6 14.5 9.5 38.6 28.4 96.0 14.2 15.7 267.7 31 32.2 na 3.8 na 32.1 na 4.8 na 

Meriania sp. 28275 3.1 3.4 4.2 4.7 5.7 5.5 10.8 6.3 25.2 3.8 5.1 3.0 3.0 0.0 3.1 86.8 29 27.9 0.2 4.4 1.0 28.7 0.0 8.0 1.5 

Mezilaurus campaucola 3.9 3.9 4.1 4.8 4.8 5.5 34.4 9.5 114.6 8.7 37.5 4.0 0.0 0.0 5.2 240.9 29 29.0 na 13.0 na 29.0 na 16.1 na 

Ocotea cernua 6.1 6.2 6.3 6.4 7.5 7.0 33.7 8.1 26.4 8.1 17.6 6.2 6.3 0.0 6.1 152.0 27 28.4 0.1 9.9 1.5 28.6 0.2 13.2 0.8 

Ocotea sp. 28289 5.1 5.1 5.3 5.3 6.0 5.7 29.6 6.9 44.0 7.5 22.0 5.4 5.3 0.0 7.8 160.9 29 29.0 na 15.8 na 28.9 na 17.7 na 

Parinari occidentalis 5.2 5.5 5.8 6.2 6.3 5.9 8.7 8.1 189.0 11.9 71.0 5.9 7.0 3.0 5.3 344.8 29 29.3 0.1 16.5 6.0 29.5 0.1 19.8 6.9 

Pouteria torta 4.4 4.6 4.9 4.8 4.9 4.8 7.2 8.7 126.0 11.6 133.7 8.6 16.5 1.0 5.5 347.0 31 30.2 0.3 15.6 2.3 30.3 0.3 16.8 2.5 

Protium glabrescens 3.3 3.3 3.6 3.5 12.4 4.0 62.1 9.1 206.4 10.4 36.1 4.0 4.1 0.0 4.3 366.4 29 28.8 na 21.1 na 28.9 na 21.7 na 

Protium montanum 3.2 9.9 5.9 19.3 17.5 75.6 45.0 39.4 210.4 11.9 116.0 4.9 5.5 2.3 2.8 569.5 29 29.1 0.1 20.6 0.4 29.4 0.1 24.6 2.0 
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Prunus sp. 28301 7.7 7.9 8.4 8.7 10.9 9.2 38.6 14.5 266.2 16.7 160.0 10.1 12.9 7.7 9.0 588.5 29 29.5 na 21.2 na 29.6 na 24.3 na 

Retrophyllum rospigliosii 4.4 4.4 4.5 4.5 4.8 4.7 13.6 7.1 31.2 6.2 10.2 4.6 4.7 0.0 4.5 109.5 29 28.8 na 8.1 na 28.9 na 9.0 na 

Tapirira guianensis 2.2 2.3 2.9 2.6 3.1 2.7 8.9 5.8 98.0 9.7 189.5 11.5 54.1 2.4 2.4 398.0 31 30.5 0.1 14.4 2.0 30.6 0.1 15.5 1.9 

Weinmannia pinnata 3.9 4.0 4.1 4.1 4.3 4.4 14.1 10.3 53.0 6.4 8.4 4.0 4.0 2.2 4.3 131.4 29 28.7 0.1 6.0 0.9 28.8 0.1 6.5 0.8 

                          
Mean 3.0 3.6 4.2 4.6 6.6 7.6 22.0 11.9 118.9 10.6 111.3 6.9 17.0 1.7 3.6 333.4 

 

29.2 

 

10.4 

 

29.6 

 

12.5 

 
σ 0.3 0.4 0.3 0.6 0.7 2.3 2.6 1.4 13.3 0.8 16.9 0.8 2.8 0.3 0.4 31.8 

 

0.1 

 

0.7 

 

0.1 

 

0.9 

 

                          
Trocha Union IV 

                         
Alchornea grandiflora 4.7 4.7 5.2 5.4 6.1 6.0 7.5 8.7 73.8 10.7 41.1 5.6 5.7 1.1 4.8 191.0 29 29.4 0.1 7.7 1.1 29.7 0.1 9.4 1.2 

Cinchona calisaya 4.5 4.5 6.8 6.7 7.1 6.8 8.7 7.1 10.7 7.0 9.0 3.8 3.8 0.0 4.8 91.3 29 28.9 0.2 8.7 0.9 29.1 0.1 11.0 1.4 

Clusia alata 2.3 2.3 5.5 3.9 10.3 5.8 23.3 21.2 685.7 17.0 199.7 4.3 12.4 2.3 2.6 998.6 29 29.3 0.2 22.6 4.8 29.4 0.1 24.7 4.6 

Clusia sp. 28522 4.8 3.5 10.4 5.0 16.4 5.6 22.8 18.2 438.0 11.3 105.6 4.2 7.8 1.5 3.5 658.5 29 29.1 0.1 20.5 3.7 29.3 0.1 23.4 4.2 

Cyathea delgadii 4.6 4.6 4.7 4.6 5.0 4.8 5.9 4.8 9.0 4.7 6.6 0.0 5.8 3.5 4.0 72.7 29 29.3 0.2 11.9 2.5 29.7 0.1 21.9 2.6 

Freziera karsteniana 2.5 2.5 2.7 3.3 4.3 4.8 11.3 6.4 124.1 10.7 220.7 9.0 78.0 3.7 9.4 493.2 31 30.7 0.1 18.3 0.9 30.7 0.1 22.6 1.4 

Gordonia fruticosa 4.9 4.9 5.4 5.2 5.6 5.3 6.2 5.5 26.2 6.0 23.1 5.2 5.2 0.0 5.0 113.6 29 29.6 0.1 14.6 0.7 29.8 0.0 20.3 1.6 

Hedyosmum goudotianum 7.9 7.9 8.2 8.1 9.0 8.8 37.8 16.5 381.7 10.8 12.4 0.0 5.5 3.0 5.6 523.2 29 28.8 0.0 31.4 1.1 28.9 0.0 35.2 1.2 

Miconia madisonii 3.7 4.2 4.9 4.6 5.1 5.2 6.0 5.6 7.3 4.3 4.7 2.8 3.0 1.7 3.8 67.0 29 27.2 0.3 2.0 0.4 28.7 0.1 3.2 0.6 

Miconia sp. 28578 11.2 11.1 15.0 11.5 13.4 11.3 13.7 11.6 20.0 11.5 15.8 11.6 12.7 0.0 11.3 181.5 29 28.1 na 10.5 na 29.6 na 11.1 na 

Myrsine andina 2.7 2.7 5.2 2.9 6.8 4.8 17.4 21.4 452.3 31.6 474.4 9.0 28.9 2.7 2.7 1065.6 31 30.0 0.1 17.2 1.4 30.0 0.1 17.8 1.4 

Myrsine coriacea 2.6 2.5 3.9 3.5 37.5 8.3 179.8 23.7 936.3 30.7 286.7 5.6 12.5 2.2 2.6 1538.5 29 29.1 0.1 24.4 2.3 29.2 0.1 26.9 2.2 

Ocotea glabriflora 2.7 2.8 3.6 4.1 4.1 3.8 4.3 3.7 5.5 3.2 4.0 1.2 1.2 0.0 2.3 46.4 29 27.0 0.4 2.4 0.5 28.8 0.1 4.8 1.0 

Ocotea sp. 9607 2.1 2.1 4.8 3.4 19.2 4.6 60.2 3.7 25.1 2.7 4.9 1.7 1.7 0.0 2.1 138.4 27 27.3 0.2 15.0 1.3 27.9 0.2 33.0 4.6 

Prunus integrifolia 2.2 2.2 2.7 2.3 5.8 3.2 52.9 24.7 734.0 26.4 291.2 9.1 12.2 1.6 2.6 1173.1 29 29.5 0.1 21.0 1.8 29.5 0.1 21.7 1.9 

Ternstroemia brachypoda 2.4 2.4 2.6 2.5 3.0 2.8 20.5 9.1 254.2 13.9 90.9 6.8 18.3 2.8 4.2 436.4 29 29.5 0.1 15.6 0.8 29.5 0.1 16.5 0.8 

Weinmannia bangii 5.5 5.6 6.1 5.7 13.8 8.1 322.9 23.4 752.7 25.5 489.9 8.6 13.6 0.5 6.4 1688.3 29 29.2 0.1 32.4 3.3 29.2 0.1 34.7 3.3 

Weinmannia reticulata 5.2 6.7 7.0 6.9 7.2 7.1 8.5 8.0 13.8 8.8 11.0 6.9 6.9 1.9 7.2 113.0 29 29.2 0.3 3.9 0.7 29.4 0.1 4.2 0.6 

                          
Mean 3.9 4.0 5.5 4.7 10.2 5.8 48.6 12.8 297.3 13.5 137.6 5.0 13.3 1.7 4.4 568.1 

 

28.9 

 

15.8 

 

29.3 

 

19.4 

 
σ 0.3 0.3 0.3 0.3 1.2 0.3 12.9 1.1 45.4 1.3 24.3 0.4 2.3 0.2 0.3 79.7 

 

0.1 

 

1.1 

 

0.1 

 

1.3 

 

                          
Esperanza 

                         
Anthurium sp. 0.0 1.1 4.3 1.9 7.1 5.2 17.4 7.8 189.6 18.3 171.1 8.2 14.8 0.3 0.2 447.4 29 29.8 0.1 10.0 1.2 29.9 0.1 11.6 1.0 

Cavendishia bracteata 17.7 17.7 18.3 17.5 20.3 17.9 29.4 0.0 42.1 20.4 78.4 20.9 37.6 18.3 29.3 385.8 31 30.7 na 16.1 na 30.6 na 18.2 na 

Clusia alata 4.0 4.2 10.5 6.9 18.9 8.7 41.1 27.5 765.5 21.4 220.8 6.1 12.0 3.9 4.2 1155.7 29 29.2 0.0 22.5 2.4 29.4 0.0 25.6 2.2 

Clusia elliptica 6.1 6.2 8.0 7.1 11.6 10.2 31.2 30.7 581.7 18.0 215.6 9.2 16.3 5.4 6.7 964.0 29 29.2 0.1 17.8 6.3 29.3 0.1 19.6 6.6 

Clusia sp. 28086 0.0 1.3 17.6 7.7 30.0 10.3 33.3 33.1 358.8 10.6 73.4 1.2 2.3 0.2 0.4 580.1 29 28.8 0.1 9.1 2.5 29.2 0.1 11.3 2.6 

Cyathea sp. 28406 0.0 0.1 0.2 0.2 0.7 1.2 2.2 2.4 3.9 1.3 1.6 0.5 0.0 0.0 0.0 14.3 29 28.4 0.1 1.5 0.2 28.8 0.1 1.8 0.2 

Elaphoglossum sp. 0.0 0.1 0.1 0.2 0.6 0.8 1.4 0.9 1.8 0.6 0.7 0.2 0.4 0.1 0.2 8.0 29 28.6 0.2 1.9 0.0 29.0 0.1 2.6 0.2 

Hedyosmum angustifolium 9.7 9.8 19.5 13.3 27.5 17.0 37.7 43.9 658.9 20.8 201.3 6.0 11.5 6.6 9.9 1093.3 29 26.6 0.2 2.0 0.3 28.5 0.2 11.4 2.0 

Hedyosmum cuatrecazanum 13.9 13.9 14.5 14.7 16.0 16.0 25.7 16.2 57.8 14.3 14.5 0.0 0.0 0.0 14.0 231.3 29 28.3 na 9.9 na 28.6 na 19.7 na 
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Meliosma frondosa 0.0 1.1 1.2 3.9 5.5 6.4 40.4 11.3 43.1 5.4 18.5 1.0 1.1 0.1 0.1 139.0 29 28.4 0.2 3.9 0.6 28.6 0.2 5.8 1.1 

Miconia micropetala 0.0 0.9 1.5 2.7 3.6 4.7 11.7 7.4 43.1 5.3 19.8 1.0 1.2 0.1 0.1 103.0 29 28.8 0.2 4.9 1.0 29.1 0.2 6.3 0.9 

Myrsine coriacea 2.7 2.4 4.6 6.0 30.2 17.2 120.3 37.2 621.3 25.5 257.9 5.7 13.7 2.7 2.8 1150.4 29 29.2 0.1 13.6 2.1 29.3 0.1 16.9 2.4 

Oreopanax sp. 9624 0.0 4.2 7.4 3.5 5.3 3.9 7.6 3.7 51.7 3.5 3.1 0.4 0.3 0.1 0.1 94.7 29 27.6 0.4 4.5 1.0 28.7 0.1 7.3 1.9 

Palicourea sp. 0.0 0.2 0.6 0.5 2.1 2.0 7.2 4.7 36.6 4.5 32.0 2.5 4.7 0.2 0.2 97.9 29 29.4 0.4 5.3 1.4 29.9 0.2 6.2 1.6 

Pentacalia sp. 28009 12.4 12.4 13.0 12.5 17.0 16.0 22.9 23.8 34.0 41.6 73.9 16.8 16.6 8.7 14.2 335.7 31 29.8 0.0 2.3 0.6 30.1 0.1 2.3 0.6 

Pentacalia sp. 28150 19.3 19.5 20.5 20.3 20.7 20.2 20.5 19.6 22.6 19.4 20.3 0.0 0.0 0.0 19.5 242.3 29 30.3 na 20.7 na 30.4 na 25.0 na 

Prunus integrifolia 3.2 3.2 4.6 3.8 10.7 4.7 57.1 16.0 399.8 13.6 137.5 5.1 6.5 2.8 2.8 671.4 29 29.2 0.1 21.2 2.6 29.3 0.1 23.2 2.8 

Schefflera allocotantha 0.0 5.2 46.0 19.7 56.8 6.8 13.9 4.2 16.4 1.9 2.5 0.9 0.8 0.2 0.2 175.4 29 25.2 0.4 4.5 0.9 28.4 0.0 5.3 1.9 

Symplocos reflexa 0.0 1.4 1.2 1.8 2.5 5.5 9.6 14.5 73.0 4.5 117.5 3.1 53.8 0.2 0.2 288.9 31 30.6 0.1 9.7 2.0 30.7 0.1 13.0 2.7 

Weinmannia bangii 0.0 0.2 0.4 0.4 3.0 8.8 82.1 12.9 186.8 3.7 16.4 0.4 0.4 0.1 0.1 315.7 29 28.8 0.2 10.9 1.2 28.9 0.2 16.5 3.3 

                          
Mean 2.9 3.6 7.9 5.8 14.4 8.8 39.9 18.2 277.3 12.9 103.3 4.2 9.1 2.2 3.3 513.8 

 

28.8 

 

9.9 

 

29.3 

 

12.7 

 
σ 0.6 0.5 1.4 0.7 2.1 0.8 6.2 2.1 45.9 1.6 15.6 0.6 1.5 0.5 0.7 70.1 

 

0.1 

 

0.9 

 

0.1 

 

1.0 

 

                          
Acjanaco 

                         
Clethra cuneata 7.6 7.7 19.3 9.9 105.2 17.5 350.7 32.4 1047.9 20.2 204.4 9.2 11.6 7.3 8.2 1859.2 29 28.4 0.2 31.2 2.2 28.8 0.1 40.8 3.0 

Hedyosmum sp. 28204 10.5 10.2 118.6 14.4 99.0 12.1 33.3 8.0 11.2 7.8 12.2 0.9 9.8 0.9 11.2 360.0 27 25.1 0.3 18.7 5.1 27.8 0.2 131.3 70.8 

Miconia setulosa 5.3 5.5 7.9 7.5 7.4 6.5 10.4 6.3 12.8 5.5 6.9 0.9 4.5 0.0 5.8 93.1 29 27.2 0.3 4.0 0.6 28.6 0.1 9.4 1.7 

Miconia sp. 28227 4.6 5.4 6.4 6.4 6.3 5.4 12.8 5.3 12.9 4.6 6.1 4.4 4.5 0.0 5.0 90.1 29 27.2 na 4.5 na 28.3 na 15.9 na 

Miconia sp. 6363 7.0 7.0 12.3 7.7 14.9 7.5 15.4 7.8 34.2 7.5 12.5 1.0 7.2 0.0 7.7 149.8 29 27.8 0.9 16.8 1.6 28.7 0.3 37.8 14.2 

Myrsine pelucida 5.2 5.2 6.2 5.2 6.2 7.2 12.9 13.7 247.1 15.1 95.0 6.2 8.1 0.0 5.3 438.4 29 29.4 na 15.7 na 29.5 na 17.4 na 

Pentacalia oronocensis 5.4 5.5 6.7 9.6 9.5 24.0 15.6 21.3 58.2 14.5 133.7 7.8 15.2 5.7 6.8 339.3 31 29.7 na 4.1 na 30.2 na 7.3 na 

Persea ferruginea 2.3 7.7 18.3 13.4 16.0 11.1 13.4 2.4 3.3 1.9 2.1 1.2 2.1 0.5 2.1 97.8 27 24.7 0.1 2.0 0.4 27.6 0.1 27.3 6.3 

Polylepis pauta 6.1 5.7 15.8 6.1 8.9 7.2 21.9 6.7 44.0 6.6 91.4 7.4 122.2 5.7 7.5 363.1 31 30.9 0.2 33.8 3.9 31.3 0.2 54.5 4.6 

Symplocos baehnii 3.5 3.5 4.2 3.9 5.7 10.7 36.0 9.8 282.5 10.4 306.1 7.4 56.7 3.5 3.7 747.7 31 30.1 0.1 30.6 3.6 30.1 0.1 37.8 2.4 

Symplocos quitensis 7.2 7.3 8.1 7.9 8.4 7.9 9.1 8.6 13.4 7.6 11.7 7.3 8.1 1.6 8.1 122.3 29 28.7 0.2 4.5 0.5 29.6 0.0 6.7 0.8 

Weinmannia fagaroides 5.5 5.7 8.9 6.8 22.9 14.3 667.2 22.2 397.8 14.0 121.6 5.7 5.9 1.9 5.9 1306.3 29 28.1 0.2 30.4 2.8 28.2 0.1 42.1 3.2 

                          
Mean 6.0 6.6 22.5 8.5 30.4 10.6 121.3 11.7 198.6 9.2 84.9 4.7 24.3 2.3 6.6 548.1 

 

27.9 

 

18.1 

 

29.0 

 

40.7 

 
σ 0.5 0.5 9.6 0.7 8.3 1.0 39.7 1.7 61.9 1.0 17.4 0.6 5.9 0.4 0.6 110.9   0.3   2.0   0.2   8.5   

Cmax: Modal chain length 

                         
ACL: Average Chain Length 

                         
CPI: Carbon Preference Index 
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Table S2 Tukey’s Honest Significant Difference significance table for the n-alkane load by lamina area (KMA).  

Site TAM-06 TAM-05 PAN-02 PAN-03 SPD-02 SPD-01 TRU-04 ESP-01 ACJ-01 

TAM-06   ns ns ns ns * **** **** **** 

TAM-05 ns   ns ns ns * **** **** **** 

PAN-02 ns ns   ns ns ns **** **** **** 

PAN-03 ns ns ns   ns ns **** **** **** 

SPD-02 ns ns ns ns   * **** **** **** 

SPD-01 * * ns ns *   ns **** ** 

TRU-04 **** **** **** **** **** ns   * ns 

ESP-01 **** **** **** **** **** **** *   ns 

ACJ-01 **** **** **** **** **** ** ns ns   

ns: Not significant 

        *: p ≤ 0.05 

         **: p ≤ 0.01 

         ****: p ≤ 0.0001 

          

Table S3 Tukey’s Honest Significant Difference significance table for the average chain length (ACL) of n-alkanes.  

Site TAM-06 TAM-05 PAN-02 PAN-03 SPD-02 SPD-01 TRU-04 ESP-01 ACJ-01 

TAM-06   ns ns ns **** ** **** **** **** 

TAM-05 ns   ns ns **** **** **** **** **** 

PAN-02 ns ns   ns ** ns * *** **** 

PAN-03 ns ns ns   ns ns ns * **** 

SPD-02 **** **** ** ns   ns ns ns **** 

SPD-01 ** **** ns ns ns   ns ns **** 

TRU-04 **** **** * ns ns ns   ns **** 

ESP-01 **** **** *** * ns ns ns   **** 

ACJ-01 **** **** **** **** **** **** **** ****   

ns: Not significant 

        *: p ≤ 0.05 

         **: p ≤ 0.01 

         ***: p ≤ 0.001 

         ****: p ≤ 0.0001 

          


